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1
FALL DETECTION SCHEME USING FFS

CROSS REFERENCE TO RELATED
APPLICATION(S)

This application claims priority to provisional U.S. Patent
Application Ser. No. 61/860,858, filed on Jul. 31, 2013, which
is hereby incorporated by reference in its entirety.

BACKGROUND

Disk drives comprise a disk media and a head connected to
a distal end of an actuator arm which is rotated about a pivot
by avoice coil motor (VCM) to position the head radially over
the disk. The disk comprises a plurality of radially spaced,
concentric tracks for recording user data sectors and embed-
ded servo sectors. The embedded servo sectors comprise head
positioning information (e.g., a track address) which is read
by the head and processed by a VCM servo controller to
control the velocity of the actuator arm as it seeks from track
to track.

FIG. 1 shows a prior art disk format 2 comprising a number
of servo tracks 4 defined by concentric servo sectors 6,-6,
recorded around the circumference of each servo track,
wherein data tracks are defined relative to the servo tracks 4.
Each servo sector 6, comprises a preamble 8 for storing a
periodic pattern, which allows proper gain adjustment and
timing synchronization of the read signal, and a sync mark 10
for storing a special pattern used to synchronize to a servo
data field 12. The servo data field 12 stores coarse head
positioning information, such as a servo track address, used to
position the head over a target data track during a seek opera-
tion. Each servo sector 6, further comprises groups of servo
bursts 14 (e.g., A, B, C and D bursts), which comprise a
number of consecutive transitions recorded at precise inter-
vals and offsets with respect to a data track centerline. The
groups of servo bursts 14 provide fine head position informa-
tion used for centerline tracking while accessing a data track
during write/read operations.

In the related art, there are free fall sensors (FFS) that are
operable to detect a free fall event in response to an accelera-
tion occurring in the disk drive due to the disk drive under-
going a free fall. The disk drive may undergo a free fall, for
example, when a user drops the device containing the disk
drive. During the free fall, a frequency response of the accel-
eration signal can be measured, and action can be taken
depending on the frequency response. When a free fall is
detected, the head is moved off the disk and parked in the
ramp to protect against damage.

As disk drives are implemented in smaller and more mobile
devices, such as mobile phones and tablets, the possibility of
false positives increases for free fall detection. Such mobile
devices may be used more vigorously in gaming, exercise or
running situations, in comparison to laptops and desktops. If
the head is parked during such situations, then the device may
be inadvertently disabled by a false trigger of the free fall
detection system, even though the mobile device is not in free
fall and is being used legitimately. The quality of the free fall
detection therefore needs modification to provide timely trig-
gers to initiate the head parking and to reduce the trigger
based on false positives (e.g., gaming motion, walking
motion, etc.).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a prior art disk format having a plurality of
servo tracks defined by embedded servo sectors.
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FIG. 2A shows a disk drive according to an example
embodiment of the present inventive concept, having a head
actuated over a disk by a servo control system.

FIG. 2B is a flow diagram according to an example
embodiment of the present inventive concept, wherein the
control circuitry may actuate the head to park when a free fall
or tilt drop is detected.

FIG. 3A illustrates a state diagram in accordance with an
example embodiment.

FIG. 3B illustrates an example of the magnitude measure-
ments based on acceleration sensor output, in accordance
with an example embodiment.

FIGS. 4A to 4D illustrate example state changes based on
acceleration readings, in accordance with an example
embodiment.

FIG. 5 illustrates a flow diagram of an example embodi-
ment of the present inventive concept.

FIG. 6 illustrates a flow diagram of a gaming mode process
in accordance with an example embodiment.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Some example embodiments described herein involve
apparatuses and methods for a new free fall detection scheme
to be used in an acceleration sensor or accelerometer
equipped (e.g., three axis accelerometer, gyroscope, etc.) disk
drive that is embedded in a mobile device, such as a tablet or
mobile phone. In contrast to the related art, example embodi-
ments involve a multi-mode detection scheme that includes
free fall, tilt drop, and gaming mode detection to distinguish
the different types of motion that could occur in a mobile
device environment. In this manner, minor falls or tilts (e.g.
<1-2 cm) and movement related to legitimate use (e.g., run-
ning, gaming, etc.) can be handled without triggering a false
positive.

In the free fall mode detection, the mobile device can be
configured to detect and confirm weightless free falls.
Weightless free falls are a common and dangerous type of fall.
To detect and confirm a weightless free fall, an accelerometer
that measures at least three degrees of freedom can be uti-
lized, such that magnitude of the acceleration outputs drop to
0 and stay near 0 during the falls. Such free falls can happen
at any time during the usage of the device.

In the tilt drop mode detection, sensor outputs may vary at
different sensor locations, supporting edges, tilt angles, and
so on. One example of a tilt drop motion is when the mobile
device is initially positioned at a tilted upright angle and then
falls off from the position toward the table surface. The
mobile device may fall around a supporting edge, wherein
free-fall like fast motions may be unlikely before the tilt drop.
During a tilt drop or a free fall, the control circuitry can be
configured to park the head before the impact to the device
occurs.

In the gaming mode detection, the mobile device can be
configured to detect gaming mode motions, which can
involve motions where the user is using the mobile device in
a physical activity, such as playing a mobile game, jogging,
etc. The three modes of detection can be based on thresholds
of the magnitudes of the acceleration outputs, as described
with respect to FIG. 3B.

FIG. 2A shows a disk drive according to an example
embodiment of the present inventive concept, having a disk
16, a head 18, and control circuitry 20 including a servo
control system operable to actuate the head 18 over the disk
16. The disk 16 includes embedded servo sectors 32,-32, that
define a plurality of servo tracks 34. The control circuitry 20
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executes the flow diagram of FIG. 2B. The operations in FIG.
2B may be implemented, for example, in the hard drive firm-
ware. When the hard disk drive is in operation, the head is
flying over the disk. Acceleration readings from one or more
sensors are provided to the control circuitry (22). The control
circuitry can then determine the magnitude of the accelera-
tion based on the acceleration readings (24). If a first thresh-
old is crossed, the control circuitry may configure the disk
drive to enter free fall mode (26). If the magnitude of the
acceleration did not cross the first threshold, and is in between
the first threshold and a second threshold, then the control
circuitry may configure the disk drive to enter tilt drop mode
(28). The control circuitry may be configured to confirm if the
device has entered the tilt drop or the free fall mode, and park
the head upon confirming the mode (30).

In the example embodiment of FIG. 2A, the disk 16 com-
prises embedded servo sectors 32,-32,, that define a plurality
of servo tracks 34. The control circuitry 20 processes read
signals 36 from the head 18 for feedback in controlling the
head while implementing the flow diagram of FIG. 2B. The
control circuitry 20 generates a control signal 38 appliedto a
voice coil motor (VCM) 40 which rotates an actuator arm 42
about a pivot in order to actuate the head 18 to load the head
to fly over the disk and to unload the head and park the head
on a ramp.

Terms such as “first”, “second”, “third”, etc. are used for
labeling purposes and are not meant to be limiting to any
particular order. For example, in another example implemen-
tation by the control circuitry 20, the control circuitry can
utilize an additional warning mode before entering the free
fall mode 26 when the magnitude of acceleration readings are
beyond a first threshold. This first threshold can be configured
depending on the desired implementation of the device to
account for variance of measurements from the sensors.
When this threshold is exceeded, then the control circuitry
may proceed to entering the free fall mode 26 if the magnitude
readings are below a second threshold. Additionally, a gam-
ing mode may be initiated if the magnitude does not exceed
the tilt drop mode or free fall mode thresholds, as described in
further detail below.

FIG. 3A illustrates a state diagram in accordance with an
example embodiment. In a first normal state (300), the control
circuitry is configured to allow the disk drive to operate nor-
mally while monitoring the acceleration from the sensors of
the device. When the acceleration magnitude exceeds a warn-
ing threshold or changes from a nominal state, then the state
can proceed to a warning qualification state (301) to deter-
mine if further detection is needed. If no further detection is
needed, then the warning is disqualified, wherein the state can
revert back to the normal state. The warning qualification
state can determine if further detection is needed based on
various attributes (e.g., time elapsed for the acceleration read-
ings), depending on the desired implementation.

If further detection is needed, then the warning is qualified
and the control circuitry can proceed to the free fall detection
mode (302-1) to check for a free fall. The check for a free fall
can be conducted based on one or more attributes, such as the
magnitude of the outputs of the acceleration sensors with
respect to a threshold. If a free fall is detected and confirmed
over a period of time, then the control circuitry can configure
the disk drive to park the head (304). If no free fall is detected
or confirmed, the control circuitry can enter a gaming mode
(303) wherein the control circuitry checks for tilt drop and
free fall while permitting the device to perform normally. If
no motion is detected after a period of time (e.g., 0.5 seconds
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4

or in accordance with a desired implementation) during the
gaming mode, then the control circuitry can revert back to the
normal state (300).

During the gaming mode (303), the magnitude of the accel-
eration sensor outputs are monitored to check for free falls
(302-1) or enter a tilt drop mode (302-2) if excessive motion
is detected. The tilt drop detection can be based on one or
more attributes, such as the magnitude of the outputs of the
acceleration sensors with respect to another threshold, or if
the integration based on the difference between the magni-
tude and 1 g is positive, as described below. Tilt drop can be
detected, for example, if the magnitude exceeds the threshold
for the gaming mode and doesn’t exceed the threshold for free
fall detection, or if the integration based on the difference
between the magnitude and 1 g is positive, as described
below. If a tilt drop is detected, the control circuitry can be
configured to park the head (304). Otherwise, the control
circuitry can be configured to revert back to the normal state
(300) or the gaming mode state (303), depending on the
desired implementation.

When a tilt or free fall is detected and confirmed over a
period of time (304), the control circuitry is configured to
park the head and monitor the ensuing shock impact (305).
The period of time can be chosen based on the configuration
of'the device and the desired implementation, and should be
a time period that is sufficient for confirming a fall yet short
enough to allow time for the head to park before an impact
event. The impact will result in a frequency response by the
outputs of the acceleration sensors, which will gradually dis-
sipate to normal. When the impact is normal (e.g., the mag-
nitude of the acceleration readings have reverted to 1 g), then
the control circuitry loads the head back to the media (306),
whereupon the control circuitry enters the gaming mode
(303) before reverting to the normal mode (300).

FIG. 3B illustrates an example of the magnitude measure-
ments based on acceleration sensor output, in accordance
with an example embodiment. The control circuitry may
navigate the various states in the state diagram of FIG. 3A
based on the magnitude measurements as illustrated in FIG.
3B. The thresholds can be based on the Vector Sum (VS) of
the outputs of the acceleration sensors. VS represents the
magnitude of the vector addition of X, Y, Z-axis accelerations
and can be formulated, for example, as VS=sqrt
(X"2£Y"2+7"2). The slope of the output of the accelerations
sensors can also be utilized instead of the magnitude, depend-
ing on the desired implementation; however, the characteris-
tics of the tilt drop may be more difficult to characterize in a
slope based implementation.

When the mobile device is not undergoing any particular
motion, VS will be substantially close to 1 g with some degree
of variance for measurement error or nominal movement.
During a free fall or a tilt fall, VS will approach 0. During the
gaming mode, where the user is conducting operational
motions such as playing a game or running, the VS will move
up and down around 1 g. VS based thresholds can be imple-
mented regardless of the orientation of the mobile device.

Weightless free falls tend to have a stronger sensor signa-
ture compared to other general falls. The VS in a free fall
drops to O rather quickly and stays near 0. Two different
thresholds can be utilized in the FFS detection. For example,
when VS<Free Fall Threshold, the free fall detection algo-
rithm can be executed; when VS is between the Free Fall
Threshold and the General Fall Threshold, the tilt drop detec-
tion algorithm can be executed.

In an example implementation, the control circuitry can
enter the gaming mode when VS>1.15 g. The intensity of the
gaming motion can be determined by integrating (VS™2-1)
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after entering the gaming mode. The control circuitry can
then maintain the gaming mode when the integration is >0.

Based on the design requirement and the acceleration sen-
sor location, the FFS detection can be made more sensitive to
detect the tilt drops. Without the history of the motion, it may
be hard to distinguish tilt drops from normal user operational
motions. Thus, integration saves the “motion history” to
reduce the likelihood of false triggers.

Tilt drops tend to fall around a supporting edge and tend not
to have large motions before the tilt drops. So when the
mobile device is in the gaming mode, the tilt drop detection
can be disabled, depending on the desired implementation.
Further, because the tilt drops tend to fall around a supporting
edge, sensor placement away from the supporting edge may
aid in ensuring that the tilt drop can be detected. Free fall
detection is not affected by the gaming mode.

The gaming mode can be exited if VS is, for example
within a range 0 0.72 g-1.2 g for 500 ms. Other ranges can be
utilized depending on the desired implementation and the
type of device. Thus, the gaming mode can significantly
reduce false triggers, without sacrificing the protection for
real free falls.

FIGS. 4A to 4D illustrate example state changes based on
acceleration readings, in accordance with an example
embodiment. With referenceto FIG. 3A for the state graphs of
FIGS. 4A to 4D, the zero state represents the normal state 300,
the first state represents the warning qualification state 301,
the second state represents either the free fall detection mode
302-1 or the tilt drop detection mode 302-2, the third state
represents the gaming mode 303, the fourth state represents
the parking of the head 304, the fifth state represents the head
remaining parked while monitoring the shock impact 305,
and the sixth state represents the loading of the head back to
the media 306.

The integration graphs of FIGS. 4A to 4D are based on the
difference between the acceleration magnitude and 1 g and
the integration values are used to indicate the motion history
of the device to prevent false triggers. For example, integra-
tion can be measured as integration=integration+(VS"2-1) or
some variation thereof depending on the desired implemen-
tation. FIGS. 4A to 4D illustrate example implementations of
the integration measurements depending on the situation. The
integration may start to decrease sharply during a fall and may
increase when the acceleration magnitude exceeds a thresh-
old (e.g., when the user is moving the device while conduct-
ing some activity).

FIG. 4A illustrates the flow of the state changes based on
the acceleration magnitude for a free fall. As illustrated in
FIG. 4A, during the free fall of the mobile device, the mag-
nitude of the accelerometer readings quickly go to zero. From
the acceleration readings, the control circuitry can enter into
the warning qualification state 301 at 400 to determine if the
device is entering a free fall mode, a tilt drop mode or a
gaming mode. In the example of F1G. 4A, the control circuitry
determines that the device is in free fall mode after a 15 ms
qualifier, so the free fall detection mode 302-1 is entered at
401 to detect a free fall. After confirmation that the device is
in free fall by observing the acceleration magnitude over a 40
ms time interval, the head is then parked 304 at 402 before the
impact event. The parking may take up to 70 ms to conduct, so
the confirmation timing of the fall detection may be adjusted
depending on the device and the desired implementation to
ensure that the head is parked before an impact occurs. Upon
impact to the device as shown at 403, the head remains parked
and the acceleration magnitude is observed 305 until the
acceleration magnitude stabilizes back towards 1 g. When the
magnitude stabilizes, the head can be unloaded 306 and the
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device can enter gaming mode 303 for some time as shown at
404, whereupon the control circuitry can configure the device
to revert back to normal mode 300 as shown at 405.

FIG. 4B illustrates the flow of the state changes for detect-
ing tilt drops, in accordance with an example embodiment. As
illustrated in FIG. 4B, the magnitude of the sensor output may
not necessarily go to zero in a tilt drop as shown at 406. In the
example as illustrated in FIG. 4B, when VS<O the integration
can be measured as integration=integration+(max(Vs,0.5
2))"2-1. In this example implementation, if the integration is
roughly —10 as shown at 411, then the control circuitry enters
the tilt drop detection mode 302-2. Once the tilt drop is
confirmed over a period of time (e.g., 15 ms) at 407, the
control circuitry parks the head 304, which can take up to 70
ms as shown a 408. The head remains parked as shown at 410
during the impact 409 until the oscillation of the magnitude
begins to stabilize. Once the oscillation stabilizes, the control
circuitry enters the gaming mode 303, whereupon the control
circuitry can subsequently enter the normal state 300 after-
wards.

FIG. 4C illustrates the flow of the state changes for detect-
ing the gaming mode, in accordance with an example
embodiment. The gaming mode 303 can be used to reduce
false triggers for the fall detection. As illustrated in FIG. 4C,
the magnitude oscillates around the 1 g mark. In the example
implementation shown in FIG. 4C, the threshold is set at 1.2
g, so that if VS>1.2 g, then integration=integration+(VS"2—
1)*2, otherwise, integration=integration+(VS™2-1). When
the integration is greater than zero as illustrated in the inte-
gration graph, then the control circuitry enters the gaming
mode 303 as shown at 412.

FIG. 4D illustrates the flow of the state changes for a free
fall detection while gaming motions are occurring, in accor-
dance with an example embodiment. When movement
beyond a nominal threshold is detected, the control circuitry
enters the warning qualification state 301 at 413. Because the
integration is greater than zero as shown at 420, the control
circuitry enters the gaming mode 303 after a confirmation
(e.g. 15 ms) as shown at 414. During the gaming mode, the
magnitude oscillates around 1 g. In the example of FIG. 4D,
the user drops the device during use, which causes the mag-
nitude to sharply decrease to zero. As the magnitude
decreases towards zero, the control circuitry detects and con-
firms the free fall 302-1 at 415, and parks the head before the
impact at 416. Upon impact to the device, the head remains
parked and acceleration magnitude is observed 305 as shown
at 417 until the acceleration magnitude stabilizes back
towards 1 g. When the magnitude stabilizes, the head can be
unloaded 306 as shown at 418 and the device can enter gam-
ing mode 303 for some time as shown at 419, whereupon the
control circuitry can configure the device to revert back to
normal mode 300. The time period that the device enters the
gaming mode 303 after the head is loaded 305 can be set by
initializing the integration to a positive value. In the example
of FIG. 4D, the integration is initialized to 2000 after the head
is loaded as shown at 421.

FIG. 5 illustrates a flow diagram of an example embodi-
ment of the present inventive concept. The flow begins at 500,
wherein the magnitude of the acceleration readings may be
monitored. The magnitude may be a vector sum of all of the
acceleration readings. The magnitude is continuously mea-
sured until the measurements exceed a warning threshold,
whereupon the flow continues to 501. At 501, a check is
performed to determine if the magnitude is less than a first
threshold. If so (Y), then the flow proceeds to 503 to confirm
that the device is in free fall over a period of time and deter-
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mine from the confirmation whether to park the head at 505 or
to revert back to monitoring at 500.

Otherwise (N), the flow proceeds to 502, wherein a check
is performed to determine if the magnitude is between the first
threshold and a second threshold. If so (Y), then the flow
proceeds to confirm that the device is undergoing a tilt drop
over a period of time determine from the confirmation
whether to park the head at 505 or to revert back to monitoring
at 500. The confirmation can also involve checking the inte-
gration to determine whether the integration is negative. If the
magnitude is not between the first and second threshold (N)
and motion is detected, then the flow may execute a gaming
mode process 507 during which the flow reverts back to 500
to monitor the magnitude of the acceleration readings. During
the gaming mode process, the flow at 502 may be disabled
while there is motion occurring at the device so that only free
fall detection is executed, as explained in FIGS. 3A and 4C.
The flow at 502 may be re-executed when the motion returns
back to nominal readings (e.g. around 1 g) or after a period of
time elapses (e.g., 500 ms).

When a tilt drop or a free fall is detected, the flow proceeds
to 505 to park the head and monitor the impact. When the
impact occurs, the frequency response of the magnitude may
be measured. When the magnitude measurements stabilize
(e.g., return to within a range of 1 g), the flow proceeds to load
the head at 506, and execute a gaming mode process at 507.

FIG. 6 illustrates a flow diagram of a gaming mode process
507 in accordance with an example embodiment. At 601,
when the gaming mode process is executed, the tilt drop
detection is disabled. At 602, the magnitude of the accelera-
tionreadings is monitored and the integration is calculated. At
603, if the integration is positive (Y) then the gaming mode is
maintained and the flow proceeds to 601 to keep the tilt drop
detection disabled. If the integration is not positive (N) then
the flow proceeds to 604 to re-enable the tilt drop detection
and exit the gaming mode process after a period of time
elapses. The period of time can be set depending on the
desired implementation (e.g., based on the device configura-
tion, preset at 500 ms, etc.)

Any suitable control circuitry may be employed to imple-
ment the flow diagrams in the example embodiments of the
present invention, such as any suitable integrated circuit or
circuits. For example, the control circuitry may be imple-
mented within a read channel integrated circuit, or in a com-
ponent separate from the read channel, such as a disk control-
ler, or certain actions described above may be performed by a
read channel and others by a disk controller. In one example
embodiment, the read channel and disk controller are imple-
mented as separate integrated circuits, and in an alternative
example embodiment they are fabricated into a single inte-
grated circuit or system on a chip (SOC). In addition, the
control circuitry may include a suitable preamp circuit imple-
mented as a separate integrated circuit, integrated into the
read channel or disk controller circuit, or integrated into an
SOC.

In one example embodiment, the control circuitry com-
prises a microprocessor executing instructions, the instruc-
tions being operable to cause the microprocessor to perform
the actions of the flow diagrams described herein. In some
embodiments, certain actions may be omitted, combined,
and/or performed in a different order than shown here. The
instructions may be stored in any computer-readable
medium. In one example embodiment, they may be stored on
a non-volatile semiconductor memory external to the micro-
processor, or integrated with the microprocessor in a SOC. In
another example embodiment, the instructions are stored on
the disk media and read into a volatile semiconductor
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memory when the disk drive is powered on. In yet another
example embodiment, the control circuitry comprises suit-
able logic circuitry, such as state machine circuitry.

One example embodiment involves a disk drive compris-
ing: a disk; a head; and control circuitry comprising a servo
control system operable to actuate the head, the control cir-
cuitry configured to: determine a magnitude of acceleration
readings, the acceleration readings involving at least three
degrees of freedom, wherein when a magnitude of the accel-
eration readings is less than a first threshold, the control
circuitry detects and confirms a free fall, wherein when the
magnitude is between the first and second threshold, the
control circuitry detects and confirms a tilt drop. During the
tilt drop and the free fall, the control circuitry is further
configured to actuate the head to park and monitor the shock
impact. When the impact is over (e.g., based on the stabiliza-
tion of the magnitude, such as the magnitude being within a
range of 1 g), the control circuitry is further configured to load
the head to media and proceed to a gaming mode. The control
circuitry is configured to remain in the gaming mode until a
period of time elapses.

Another example embodiment involves a control circuitry
configured to: determine a magnitude of acceleration read-
ings, the acceleration readings involving at least three degrees
of freedom, wherein when a magnitude of the acceleration
readings is less than a first threshold, the control circuitry
detects and confirms a free fall, wherein when the magnitude
is between the first and second threshold, the control circuitry
detects and confirms a tilt drop. During the tilt drop and the
free fall, the control circuitry is further configured to actuate
the head of a disk drive to park and monitor the shock impact.
When the impact is over (e.g., based on the stabilization of the
magnitude, such as the magnitude being within a range of 1
g), the control circuitry is further configured to load the head
to media and proceed to a gaming mode. The control circuitry
is configured to remain in the gaming mode until a period of
time elapses.

Another example embodiment involves a device, compris-
ing: a disk; a head; one or more acceleration sensors, and
control circuitry comprising a servo control system operable
to actuate the head, the control circuitry configured to: deter-
mine a magnitude of acceleration readings from the one or
more acceleration sensors, the acceleration readings involv-
ing at least three degrees of freedom, wherein when a mag-
nitude of the acceleration readings is less than a first thresh-
old, the control circuitry detects and confirms a free fall,
wherein when the magnitude is between the first and second
threshold, the control circuitry detects and confirms a tilt
drop. During the tilt drop and the free fall, the control circuitry
is further configured to actuate the head to park and monitor
the shock impact. When the impact is over (e.g., based on the
stabilization of the magnitude, such as the magnitude being
within a range of 1 g), the control circuitry is further config-
ured to load the head to media and proceed to a gaming mode.
The control circuitry is configured to remain in the gaming
mode until a period of time elapses. The one or more accel-
eration sensors may be positioned away from a tilt edge of the
device at a distance towards the center of the device such that
the one or more acceleration sensors record measurements
from all of the at least three degrees of freedom when the
device undergoes a tilt drop from the tilt edge. The device may
involve a mobile device, such as a tablet or a mobile phone, or
may also be a laptop.

Another example embodiment involves a method, com-
prising: determining a magnitude of acceleration readings,
the acceleration readings involving at least three degrees of
freedom, wherein when a magnitude of the acceleration read-
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ings is less than a first threshold, detecting and confirming a
free fall, wherein when the magnitude is between the first
threshold and a second threshold, detecting and confirming a
tilt drop. During the tilt drop and the free fall, the method
further includes actuating the head of the disk drive to park
and monitoring the shock impact. When the impact is over
(e.g., based on the stabilization of the magnitude, such as the
magnitude being within a range of 1 g), the method further
includes loading the head to media and remaining in a gaming
mode until a period of time elapses.

What is claimed is:

1. A disk drive comprising:

a disk;

a head; and

control circuitry comprising a servo control system oper-

able to actuate the head over the disk, the control cir-
cuitry configured to:

determine a magnitude of acceleration readings, the accel-

eration readings involving at least three degrees of free-
dom,

confirm a free fall when a magnitude of the acceleration

readings is less than a first threshold, and

confirm a tilt drop when the magnitude is between the first

and a second threshold.

2. The disk drive of claim 1, wherein the control circuitry is
further configured to actuate the head to park on a ramp of the
disk drive, and monitor a shock impact when the control
circuitry confirms the free fall or the tilt drop.

3. The disk drive of claim 2, wherein the control circuitry is
further configured to:

monitor the shock impact until the magnitude is within a

range of 1 g, and

when the magnitude is within the range, disable detection

of'the tilt drop for a preset period of time and unload the
head from the ramp.

4. The disk drive of claim 1, wherein the control circuitry is
further configured to disable detection of the tilt drop when an
integration based on a difference between the magnitude and
1 g is positive.

5. The disk drive of claim 4, wherein the control circuitry is
further configured to re-enable detection of the tilt drop when
the magnitude is within a range of 1 g for another preset
period of time.

6. The disk drive of claim 1, wherein the acceleration
readings comprise readings along an X, Y and Z axis.

7. A control circuitry comprising:

a servo control system operable to actuate a head over a

disk; and

one or more integrated circuits configured to:

determine a magnitude of acceleration readings for a disk

drive, the acceleration readings involving at least three
degrees of freedom,

confirm a free fall when a magnitude of the acceleration

readings is less than a first threshold, and
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confirm a tilt drop when the magnitude is between the first

and a second threshold.

8. The control circuitry of claim 7, wherein the one or more
integrated circuits are further configured to actuate the head
of the disk drive to park on a ramp, and monitor a shock
impact when the control circuitry confirms the free fall or the
tilt drop.

9. The control circuitry of claim 8, wherein the one or more
integrated circuits are further configured to:

monitor the shock impact until the magnitude is within a

range of 1 g, and

when the magnitude is within the range, disable detection

of the tilt drop for a preset period of time and unload the
head from the ramp.

10. The control circuitry of claim 7, wherein the one or
more integrated circuits are further configured to disable
detection of the tilt drop when an integration based on a
difference between the magnitude and 1 g is positive.

11. The control circuitry of claim 10, wherein the one or
more integrated circuits are further configured to re-enable
detection of the tilt drop when the magnitude is within a range
of'1 g for another preset period of time.

12. The control circuitry of claim 7, wherein the accelera-
tion readings comprise readings along an X, Y and Z axis of
the disk drive.

13. A method comprising:

determining a magnitude of acceleration readings for a

disk drive, the acceleration readings involving at least
three degrees of freedom,

confirming a free fall when a magnitude of the acceleration

readings is less than a first threshold, and

confirming a tilt drop when the magnitude is between the

first and a second threshold.

14. The method of claim 13, further comprising actuating a
head of the disk drive to park on a ramp, and monitoring a
shock impact when the free fall or the tilt drop is confirmed.

15. The method of claim 14, further comprising:

monitoring the shock impact until the magnitude is within

arange of 1 g, and

when the magnitude is within the range, disabling detec-

tion of the tilt drop for a preset period of time and
unloading the head from the ramp.

16. The method of claim 13, further comprising disabling
detection of the tilt drop when an integration based on a
difference between the magnitude and 1 g is positive.

17. The method of claim 16, further comprising re-en-
abling detection of the tilt drop when the magnitude is within
arange of 1 g for another preset period of time.

18. The method of claim 13, wherein the acceleration read-
ings comprise readings along an X, Y and Z axis of the disk
drive.



